

Naval Research Laboratory VXS-1

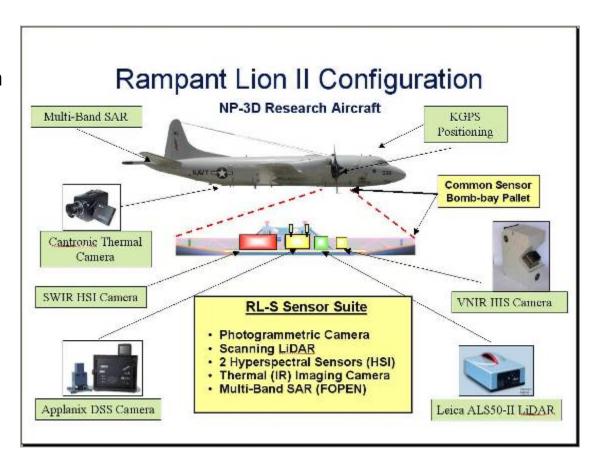
CDR John Coffey, USN Naval Research Laboratory Director of Military Operations (202) 767 - 2273

Navy's Airborne Laboratories

- 2 Research Configured NP-3D
 - (Combat Theater Capable)
- **1 AEW NP-3D**
- 2 RC-12
- 4 Scan Eagle UAS
- 1 MZ-3A Airship

Research Configured NP-3D

- Combat Theater capable
- Configurable Interiors
- Project/Research Electrical Load Centers
- 50 100 AMPs available
- Modified Bomb Bay equipment pallets
- 20" floor rails to accommodate up to 10 equipment/operator consoles
- 10,000 lb equipment payload
- Support up to 11 project specialist on flights up to 12 hours in duration
- Aircraft Navigational data access
- Wing wiring to support up to 10 external pod's
- Research configured nose/tail
- Project dedicated static pressure port
- Project Communication

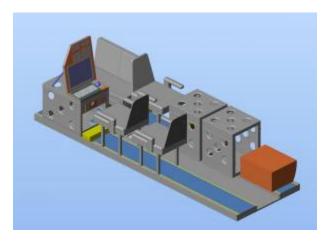


Rampant Lion Capabilities

- Hyperspectral, IR & Photogrammetric Optics, Multi-band SAR, LiDAR terrain mapping
- Sensor Suite data is co-registered by K-GPS, and recorded on RAID storage
- Photogrammetric data gathered can be rapidly distributed to end user
- Hyperspectral and LiDAR require extensive postprocessing
- Anticipate a near real time processing capability for MB-SAR

AEW NP-3D Systems Suite

- Hawkeye 2000 suite
- USG-3 CEC
- 50 100 AMPs available
- 1,500 lb equipment payload
- AN/APS-145 UHF B-band Radar
 - 360 Degree/Long Range Detection
 - Low radar cross section detection
- MkXII IFF system
 - 360 Degree/IFF Decode
 - Mode I, II, III, and IV
- Communications Suite
 - 8 UHF Radios (4 VHF capable)
 - · Maritime Band
 - 2 HF Radios
 - SATCOM
 - LINK 4 / 11 / 16



RC-12 Capabilities

- Lower Belly Radome to accommodate radar/electro optic projects
- Engines wired to support project specific generator
- 25 or 60 AMPs available
- Research Load center
 - Provide Ckt breakered 115Vac for projects
 - Isolate projects from basic A/C systems
- Floor rails to support up to three operator/equipment stations
- 1,200 lb equipment payload
- Removable seats, (can be utilized for transporting personnel/parts in support of projects)

Scan Eagle Parameters

PERFORMANCE

Max Horizontal Speed 75 knots

Cruise Speed 48 knotsCeiling 19,500 ft

Endurance 12+ hours

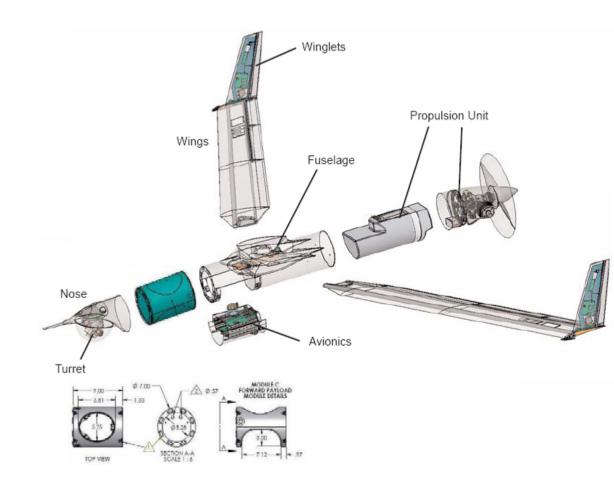
DIMENSIONS

Wing Span 10.2 ftFuselage Diameter 7 inLength 5 ft

WEIGHTS

Empty Weight 28 lb
Fuel and Payload 15 lb
Max Fuel 12.1 lb
Max Takeoff Weight 44 lb

FREQUENCIES (MHz)

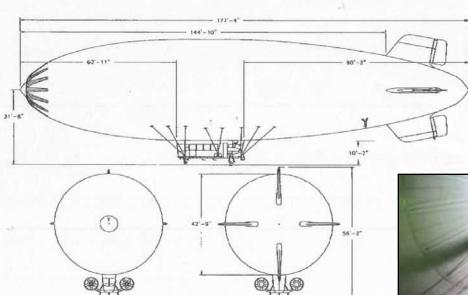

• C2/Telemetry: 1350-1390

Video Downlink: 2300-2500

PAYLOADS

Sony FCB-EX780 EO Camera

DRS Tech. E3500 IR Camera



SE UAS has over 100,000 hours of flight time in theater with clearance to operate at multiple locations

MZ-3A Airship

Length 178ft Height 55ft Width 46ft

ENVELOPE

Volume 170,000 cu ft Length 175.5 ft Diameter 43 ft

PERFORMANCE

Max Speed 45 KIAS
Max Altitude 9500 ft
Fuel Burn @ 30 KIAS = 11 gal/hr
Max ROC / D ~1400fpm/2700fpm
500-2500lb useable load
12 hours max endurance

MAIN PROPULSION

2 x 180HP Lycoming IO-360 Prop 65" diameter, 5-blade CONTROL CAR/GONDOLA

Overall Length 25.5 ft Overall Width 6 ft Interior Length 11.4 ft

Interior Height 6.3 ft Seating: Pilot + 9 passengers

ELECTRICAL POWER

1x 28 volt DC 90 amp Utility Bus 2.2 kw aux power unit Provides 2x10 amp 115/60

MOORING RADIUS

Fixed Mast 300 feet Mobile Mast 200 feet

Recent Accomplishments

- Iraq deployment in November 2008
- Coast Guard MIA flight completed over Greenland
- SOUTHCOM multi-sensor deployment completed in January of 2009
- Magnetic survey completed in June 2009
- NOAA NGS deployment to Alaska completed in July 2009
- TEW Electronic Surveillance Assessment in October 2009
- Cable HNR in October 2009
- MDA JFTM3 in November 2009
- PASS / OADT (ONR) ongoing since December 2009 to present

Future Missions

- Cable HNR 150 hrs planned in spring and summer 2010
 - C-12 mission involving Harris HNR communications package
 - Cherry Point and Fort Dix testing areas
 - Deep Lightning Bolt initiative
- TEW Electronic Surveillance Assessment in November 2010
 - Follow on to efforts started in fall 2009
 - Transition to C-12
- MDA 150 hours planned for missions scheduled for fall and winter 2010
- PASS / OADT (ONR) 250 hours planned for summer and fall 2010
 - Hawaii tests planned in addition to numerous local area flight testing
 - OA-DT3 planned for fall 2010 in Camp Lejeune area
- Blue Devil Spiral 2 Counter IED effort planned for summer and fall on MZ-3A

Summary

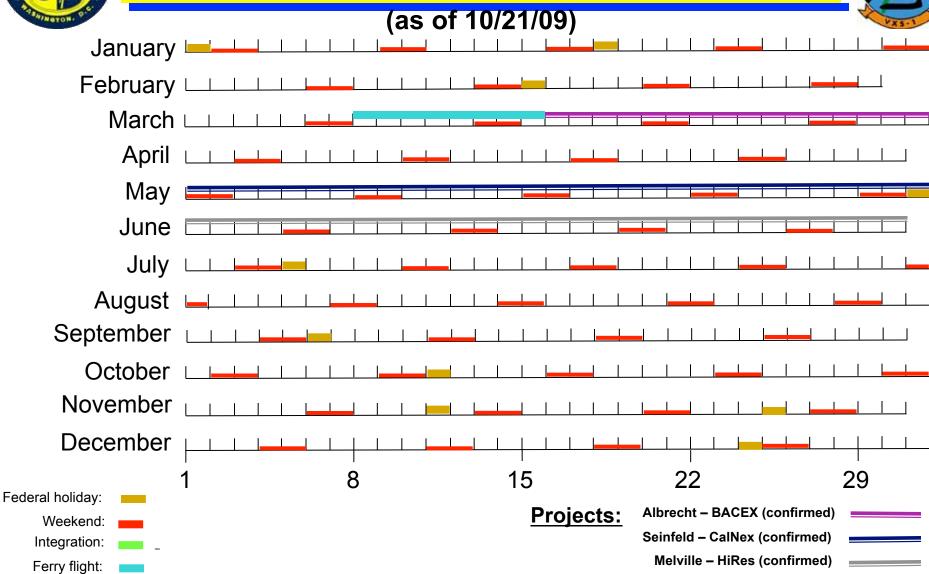
FLEXIBLE

- Swift install & flight clearance IAW NAVAIR
- Modified for power & payload
- Simultaneous project integration

CAPABLE

- World-wide deployable
- ONR/NRL oversight, able to accept funding quickly and from multiple sources

RATES	FY10	FY11
NP-3D /flthr	\$13K	\$15K
 AEW NP-3D /flthr 	\$20K	\$20K
RC-12 /flthr	\$2K	\$2.8K
 Scan Eagle /fltday 	y\$25K	\$25K
MZ-3A /flt day	\$12K	\$12K

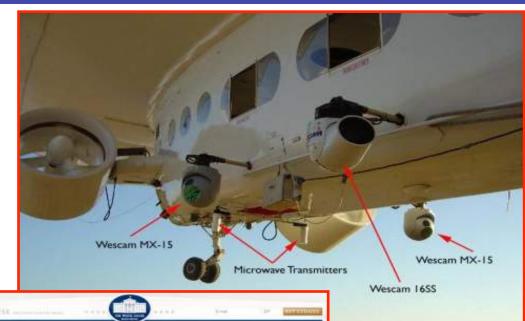


AND THE PLANT OF THE PARTY OF T

NPS/CIRPAS Twin Otter Schedule 2010

Points of Contact

- CDR John "JC" Coffey, Director of Military Operations
 - 202-767-2273, john.coffey@nrl.navy.mil
- CDR Chris Janke, Commanding Officer VXS-1
 - 301-342-3751, chris.janke@navy.mil
- Mr. Brooke Churgai, Contractor Support
 - 202-767-7512, brooke.churgai.ctr@nrl.navy.mil
- LCDR Brian Anderson, Project Director VXS-1
 - 301-342-3504, brian.anderson5@navy.mil


Navy Airship Information Brief

Airship Capabilities Past, Present, Future

Agenda

- Mission Categories
- Historical Capabilities
- Current/Near-Term
 Capabilities
- Future Potential
- MZ-3A Status
- Design Criteria
- Funding
- Take Aways

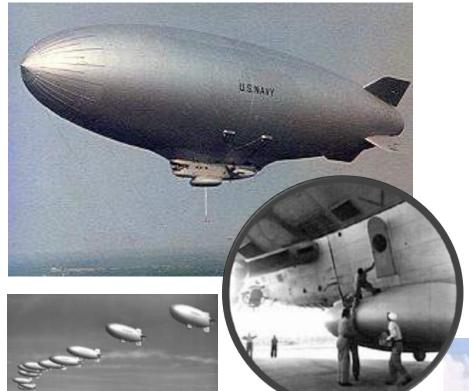
Mission Categories

Category 1: Near Shore/Port/Urban Areas/Facilities Surveillance

- -General Purpose Surveillance
- Payload 1-4 thousand lbs, Mission Period: 8-12 hrs
- Affordable Presence, Low Risk, Available NOW
- Category 2: Off Shore Patrol: Affordable Airborne Presence
 - Large classic airship capable of carrying 3-20 tons
 - Mission periods: weeks vice hours with crew and UAV's aboard
 - Mission radius ~ 500 miles; UAV's could extend surveillance range
- Category 3: Trans-oceanic Heavy Lift:
 - Hybrid Aircraft: 500 ton payload "From Fort to the Fight"
 - Insert "ready-to-fight" forces into austere AOR (no forward support)
 - Not susceptible to torpedoes/mines; high cargo survivability
 - Faster than surface ship (70-100 kts); ¼ fuel of conventional A/C
 - 30T variant: CISR/TACAMO/SOF Insertion/Sea Base Connector
- Category 4: Strat-Sat: (HAA Airships and Balloons)
 - Unmanned, 70,000 ft altitude, fill Near Space Gap by 2015
 - Relatively cheap alternative to satellites
 - 325 NM LOS, 332,000 sq-NM Collection Footprint
 - Increase DoD Com Network Resilience

Historical Capabilities

US Navy Operations 1915 - 1962


Early Warning

Convoy escort

Patrol (ISR)

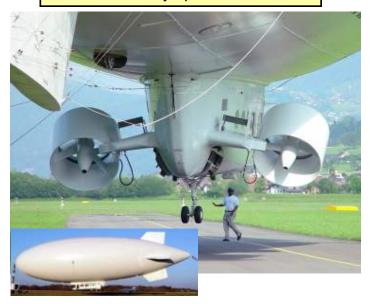
Navy needed persistent, reliable platforms to counter the German ASW threat.

WWII success inspired large airships for Early Warning through 1962.

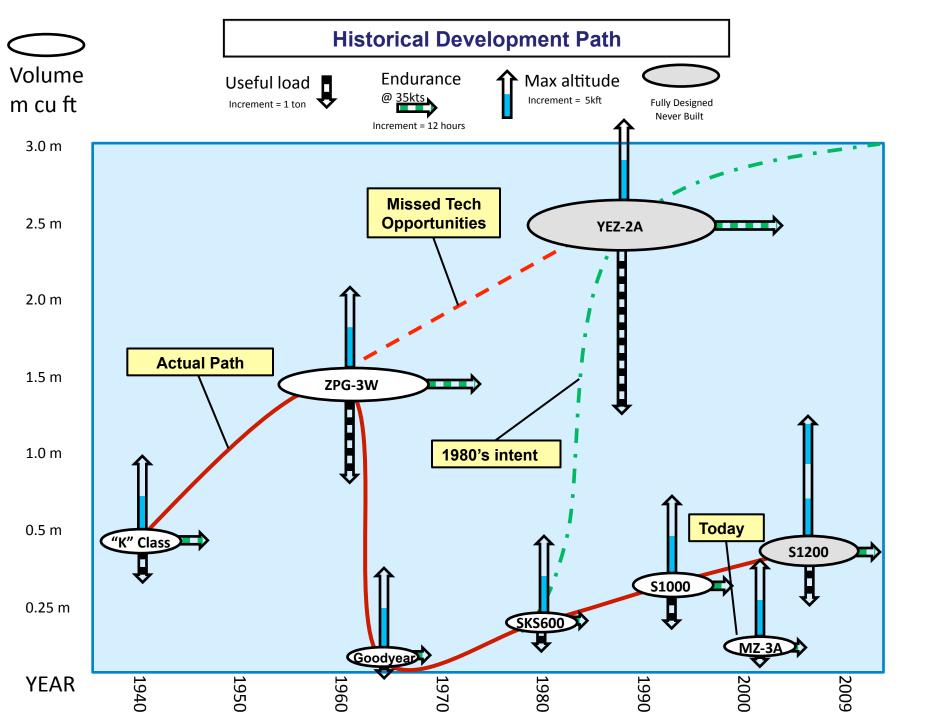
ASW

Historical Capabilities

Performance	Comparison
-------------	------------


			<u> </u>	
Туре	K-Ship (1940) (mission specific design)	ZPG-2W (1955) (mission specific design	ZPG-3W (1958) (mission specific design)	MZ-3A (2008) (COTS airship)
Volume cu/ft	456,000	975,000	1,465,000	170,000
Length	253 feet	343 feet	403 feet	178 feet
Payload	4,100 lbs.	11,200 lbs.	32,366 lbs.	2,500 lbs.
cruise / max speed (kt)	50 / 67.5	40 / 68.5	39 / 82	35 / 45
Endurance at cruise / range	59.0 hours 2,950 nm	52.5 hours 2,100 nm (264 hrs/9,448 miles)	69 hours 2,415 nm	15 hours 494 miles
Flight Crew	8	14	25	1 pilot (9 pax)

1980's Development



Current Capabilities

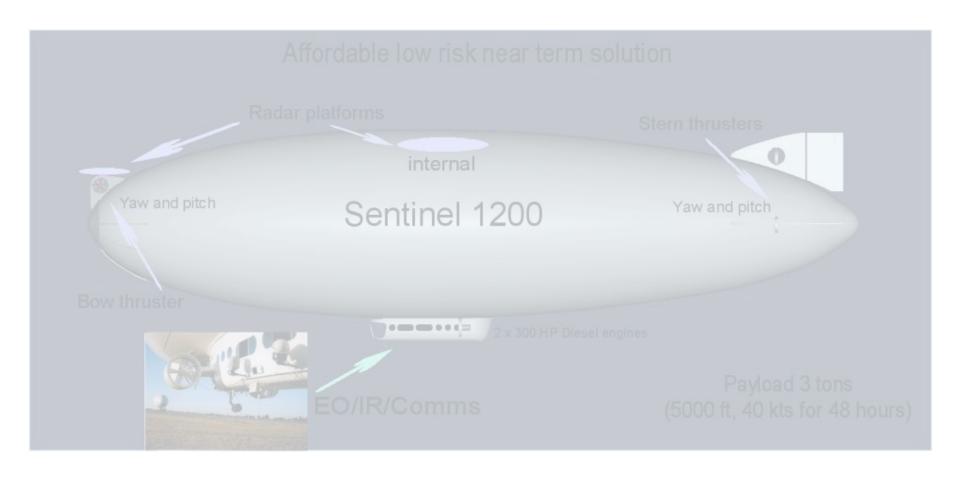
Performance Comparison

Туре	A-170	Skyship 600	Skyship 1200	Polar 400 (Experimental)
Volume cu/ft	170,00	235,000	448,000	141,000
Length	178 feet	194 feet	232 feet	163 feet
Payload	2,500 lbs.	2,800 lbs.	6,400 lbs.	UNK
cruise / max speed (kt)	35 / 45	40 / 59	40 / 70	~30 / 58
Endurance at cruise	15.0 hours	24 hours	48 hours	60 hours
Flight/Ground Crew	1 / 12	2 / 15	2 / 15	1 / 4

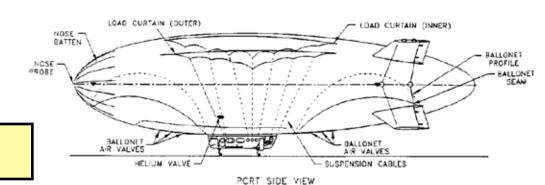
Future Potential

Long-Endurance Multi-Intelligence Vehicle (LEMV)

- Quick Reaction Capability
- Army led, Joint program
- Funded FY10-15 (OSD ISR task force)
- Provide affordable, persistent ISR platform for operational demonstration
- Operational 18 months from date of award contract
- Specifications:
 - Endurance = 3 weeks
 - Altitude = 20,000 ft
 - Payload = 2500 lbs
 - Power = 16 kw (to payload)
 - Unmanned
 - Multi-surface landing capability


3 weeks at 20kft while carrying a 2500 lb payload

Future Potential (Near Term)


Airship Design Criteria

For a purpose-built airship, the following criteria are critical design parameters for sizing and performance:

- Manned vs. optionally manned
 - flight controls and instrumentation
 - crew accommodations
- CONOPS
 - landing arrangements
 - thrust strategies
- Payload
 - installation accommodations
- Altitude
 - displacement/envelope size
 - ballonet ratio

- Endurance
 - fuel capacity
- Electric Power
 - generator capacity
- Speed
 - engine size
 - propellor

Airship technology is mature. Reasonably sized airships can be built at low risk.

Funding and Affordability

- Remainder of FY08/09 Congressionals being placed on contract (\$2.4M)
- Anticipate \$5M FY10 Congressional
- Pursuing DoD funding for project support
- Program Element (PE) is available
 - 0603268N (Naval Airship)
 - President's Budget 2010 may utilize

- A purpose built airship with 3 ton capacity can be built within 8 months at low risk for ~\$10M.
- Capable of housing large aperture devices in low-vibration, electronics friendly environment.
- Extreme endurance and dwell capability
- Fuel expense ~70% less than fixed/rotary wing for comparable payloads.
- Cost per hour further reduced with multiple ship system.

PE Description:

Includes RDT&E funds for concept definition, design development, engineering development and flight testing of preproduction prototypes for a Naval Airship.

Take-Aways

- Although counterintuitive, airships are the most survivable air platform.
- Airships are persistent due to low fuel burn; endurance can be measured in days.
- Airships possess virtues of both ships and fixed/rotary-wing air vehicles; they offer airborne vantage with ship-like persistence.
- The greatest advances in Aerospace technology are applicable but have yet to be applied to the construction of a modern airship.
- Airships require some unique servicing and handling infrastructure to include mobile masts, mechanical ground handling systems, helium service carts, etc.
- Modern airships have minimal hangar requirements and are designed to remain exposed to the elements for the majority of their operational life.

